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1 Egyptian Fractions∗

1.1 The background.

The Egyptian mathematicians developed a fascinating system of numeration for fractions. To
represent the sum of 1/3 and 1/5 for example, they would simply write 1/3 + 1/5.
Actually, there’s not a thing wrong with this, although it is tempting to go ahead and add them

together to get 8/15 . But 1/3 + 1/5 is a perfectly good name for 8/15 , a fact we recognize when
we write the equation 1/3 + 1/5 = 8/15 . The problem the Egyptians had was that although they
had a notation for the unit fractions, i.e., fractions of the form 1/n , they did not have a compact
notation for the general fraction m/n . Some might say their numeration system was faulty, but
that would be overly critical, since they were the first (as far as we know) to have any way of giving
names to fractions.
Question How do you suppose the Egyptians would have written 3/8 ? 3/5 ?
Even though the Egyptian method of writing fractions stuck around for a long time, people were

still very aware of its limitations. A good example of this is found in the Almagast , written by
the Greek Mathematician, Geographer, Scientist, etc, Ptolemy in the first century AD. This book
is sometimes referred to as the first trig book because it contains tables of trigonometric ratios
for the sine and cosine function for use in astronomical calculations. Ptolemy explains that he is
using the Babylonian method of writing fractions rather than the Egyptian method because of the
embarrassments that the Egyptian method often cause.
Much of what we know about Egyptian fractions has been inferred from the so-called Rhind

papyrus , written by the scribe Ahmes around 1650 BC. This book consists mainly of 84 word
problems of a diverse nature, plus a few tables to aid the young scriblets that Ahmes had charge of
with their calculations. Generally speaking, Ahmes seemed to be happy to write the answer to a
problem as a whole number plus a sum of unit fractions. He did not use any unit fraction more
than once in the answer.
Problem Establish the following algebraic identity:
For any n except 0 and 1, 1/n = 1/(n + 1) + 1/(n(n + 1)) .
With this identity, you can see that a fraction can always be written in lots of different ways.
The largest table in the Rhind Papyrus is the so-called 2/n table, where Ahmes gives decom-

positions of these fractions into sums of unit fractions. Most of the entries in the table come
from the decomposition you get by multiplying the above identity on both sides by two. Thus
2/7 = 2/8 + 2/(7 ∗ 8) = 1/4 + 1/28 .
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1.2 Egyptian Fractions with Sage

Sage acts very naturally with Egyptian fractions. It simply adds them up and reduces to lowest
terms. Thus if you enter 1/3 + 1/5 , the output will be 8/15. We have to do something to keep a
record of the decomposition, and the simplest way to do that is to make it into a list. Thus an
egyptian fraction for 8/15 would be type ef = [1/3,1/5] in a code cell, and to add these you could
then type add(ef)

ef = [1/3 ,1/5];ef
add(ef)

[1/3, 1/5]
8/15

One thing that would be nice to do is take an egyptian fraction and display an equation whose left
hand side is the fraction written in lowest terms and whose right hand side is the fraction written as
a sum of unit fractions. Because Sage is so intent on writing fractions in the usual form, we must
play a trick on it by writing the equation as a string and then printing it. First we will convert each
of the unit fractions in the egyptian fraction to a string. This can be done using the Sage word str
(which converts expressions to strings) and string addition + , like so

print str(ef) + ' = ' + str(add(ef))

[1/3, 1/5] = 8/15

In fact, we can define a Sage word, say DE for Display Egyptian, to automate this.

def DE(ef):
print str(ef)+' = '+str(add(ef))

#test it
DE([1/5 ,1/7 ,1/9])

[1/5, 1/7, 1/9] = 143/315

1.2.1 Problems:

Try these problems from the Rhind Papyrus. Write the answer in unit fraction form.

1. (13.) Find the product of 1/16 + 1/2 with 1 + 1/2 + 1/4 .

2. (31.) A quantity and its two thirds and its half and its one seventh together make 33. Find
the quantity.

3. (40.) Divide 100 loaves of bread among 5 men so that the shares are in arithmetic progression
and 1/7 of the sum of the 3 largest shares is the sum of 2 smallest.

4. (70.) Find the quotient when 100 is divided by 8 + 1/2 + 1/4 + 1/8.

Solving these problems:
It is hard to imagine how the young Eygptian scribe would have solved these problems, but the

natural way to solve these problems for a modern student is to convert each egyptian fraction to
a fraction in lowest terms then perform the indicated operations of multiplication, etc to get the
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solution m/n. But then comes the problem of converting m/n to an egyptian fraction! How to do
that? It turns out that Fibonnaci solved this problem in the 13th century.

1.3 Fibonnaci’s theorem

The Egyptian system of writing fractions as sums of unit fractions stuck around even after much
more efficient systems were developed. Leonardo Bonacci, better known as Fibonnaci was aware of
the system in 1200 AD and included in his book Liber Abaci a method for writing any fraction as a
sum of unit fractions.
His method was very natural: Take the fraction you wish to express in the Egyptian manner and

subtract from it the largest unit fraction which is not larger than it. If the remainder is not itself a
unit fraction, then repeat the process on the remainder. Continue this until the remainder is a unit
fraction.
For example, suppose a = 4/5. Then subtract 1/2, leaving 8/10 - 5/10 = 3/10. Now subtract

1/4, leaving 6/20 - 5/20 = 1/20, a unit fraction.
So 4/5 = 1/2 + 1/4 + 1/20.
It is not clear whether Fibonnaci had a proof that his method always worked. But it does, and

here’s a proof.
Lemma: Let p/q be any fraction which is not a unit fraction. Let 1/n be the largest unit fraction

less than p/q. Then p/q − 1/n is a fraction r/s with r < p .
Proof First write p/q − 1/n = (np − q)/(nq). Now if np − qis >= p, then adding q − p to

both sides of the inequality gives that np − p >= q. But then 1/(np − p) <= 1/q. Now multiply
both sides by p and get 1/(n − 1) <= p/q. Since p/q is not a unit fraction, but is less than 1, we
have that n > 2, and 1/(n − 1) is a unit fraction larger than 1/n which is smaller than p/q. This
contradicts the choice of n, and we conclude that np − q < p. qed.
Theorem: Fibbonaci’s method works for all fractions p/q.
Proof Starting with p/q and subtracting 1/n we get a smaller fraction (np − q)/(nq) = p′/q′.

Further, the numerator of p′/q′ is smaller than p by the Lemma. If it is 1, we are done. If not,
then clearly we will be done after no more than p′ − 1 more applications of the Lemma. qed.
With just a little more work, we can modify Fibbonaci’s method to apply to any positive rational

number.
Remember that the harmonic series Σ∞n=11/n sums to infinity. So for any positive rational

number p/q > 1 and any positive integer N, there is a natural number n such that 0 <= p′/q′ =

1/N + 1/(N + 1) + · · ·+ 1/(N + n)− p/q < 1/(N + n+ 1). Use Fibonacci’s method to write p′/q′

as a sum of unit fractions. Thus, we have the following corollary.
Corollary: Given any positive rational number p/q and any unit fraction 1/N, p/q can be written

as a sum of distinct unit fractions no greater than 1/N.

Here is the definition of a Sage word ED which implements Fibonnaci’s method for decomposing
a fraction into a sum of unit fractions. It uses two Sage words in its definition, numerator, which
gives the numerator of its argument, and floor, which returns the integer part of its argument. It
includes the modification established in the corollary which says you can start arbitrarily far out in
the harmonic sequence in your conversion to the Egyptian form.

def ED(r,N):
k=N+1
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lst=[]
while r.numerator () >1:

n=max(k,floor (1/r)+1)
k+=1
r=r-1/n
lst=lst +[1/n]

return lst+[r]
#test
ED(4/5 ,1)
ED(4/5 ,2)

[1/2, 1/4, 1/20]
[1/3, 1/4, 1/5, 1/60]

DE(ED(4/5 ,2))

[1/3, 1/4, 1/5, 1/60] = 4/5

ED(11/12 ,1)

[1/2, 1/3, 1/12]

1.3.1 Problems: Investigate.

1. Use ED and DE to print out decompositions of the fractions with an odd numerator and a
denominator of 20.

2. Can you write 1/2 as the sum of 2 unit fractions? What about n/(n + 1) for n > 1?

3. What can you say about the rational numbers which can be written as the sum of exactly 2
unit fractions?

4. Think of an interesting (to you) question about decompositions of fractions.

5. Use Fibonacci’s theorem to argue that there are infinitely many ways to write a given positive
rational number as a sum of distinct unit fractions.

* This Sage worksheet is a slight modification of a Maple worksheet I wrote in 1996 for Ma 330
Math History. The topic was taken from David Burton’s History of Mathematics: An Introduction,
3rd Edition, WCB, 1995.
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